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We study a gated quantum wire contacted to source and drain electrodes in the Fabry-Pérot regime. The wire
is also coupled to a third terminal �tip�, and we allow for an asymmetry of the tip tunneling amplitudes of
right-moving and left-moving electrons. We analyze configurations where the tip acts as an electron injector or
as a voltage probe and show that the transport properties of this three-terminal setup exhibit very rich physical
behavior. For a noninteracting wire we find that a tip in the voltage-probe configuration affects the source-drain
transport in different ways, namely, by suppressing the conductance, by modulating the Fabry-Pérot oscilla-
tions, and by reducing their visibility. The combined effect of electron-electron interaction and finite length of
the wire, accounted for by the inhomogeneous Luttinger liquid model, leads to significantly modified predic-
tions as compared to models based on infinite wires. We show that when the tip injects electrons asymmetri-
cally the charge fractionalization induced by interaction cannot be inferred from the asymmetry of the currents
flowing in source and drain. Nevertheless interaction effects are visible as oscillations in the nonlinear tip-
source and tip-drain conductances. Important differences with respect to a two-terminal setup emerge, suggest-
ing new strategies for the experimental investigation of Luttinger liquid behavior.
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I. INTRODUCTION

Electron scanning of a conductor with a probe terminal is
a customary technique to investigate its local properties. The
local density of states can be gained from the dependence of
the tunneling current on the applied bias. Nowadays, atomi-
cally resolved images are obtained both with scanning tunnel
microscopes �STMs� and atomic force microscopes
�AFMs�.1 So far, most of the efforts of the scientific commu-
nity have focused on improving the resolution power of the
probe terminal. For instance, the recent realization of stable
and sharp superconducting STM tips exploits the singularity
in the quasiparticle density of states to this purpose.2 A probe
terminal, however, may also be used as a “handle,” i.e., as an
active component to tune the transport properties of the con-
ductor. Recent works in this direction have shown that the
sign of the supercurrent can be changed when a third termi-
nal injects electrons into a Josephson junction under appro-
priate conditions3 that the conductance of a quantum dot can
be tuned by moving an AFM tip over the sample4 or that a
single-electron transistor can be used to cool down a nano-
mechanical resonator or to drive it into a squeezed state.5

The promising applications of scanning probes in the
study of transport properties of nanodevices require a theo-
retical analysis of electron transport in a three-terminal setup,
a subject which has been explored only partly so far. In par-
ticular, most of the available investigations are restricted to
the case of noninteracting conductors,6,7 whereas relatively
little attention has been devoted to those nanodevices in
which electronic correlations play a dominant role. This is
the case for one-dimensional �1D� conductors, such as semi-
conductor heterostructure quantum wires8 and single-walled
carbon nanotubes.9,10 There, electron-electron interaction
dramatically affects the dynamics of charge injection. The
response of the system to the scanning probe is quite differ-
ent from that of ordinary three-dimensional metals since in

1D electronic correlations lead to a breakdown of the Fermi-
liquid picture. Semiconductor quantum wires and carbon
nanotubes rather exhibit Luttinger liquid �LL� behavior.11–14

While for this type of systems two-terminal electron trans-
port has been widely analyzed in the last 15 years,8–14 the
electric current and noise in a three-terminal setup, including
source and drain electrodes and a tip, have remained mostly
unexplored.

There are, however, a few notable works in this direction.
The case where a bias is applied between a tip and a semi-
infinite LL was investigated by Eggert15 and by Ussishkin
and Glazman.16 Martin and co-workers17,18 have recently
analyzed the electric noise of the current injected from a tip
into a nanotube adiabatically contacted at each end to
grounded metallic leads.

In this paper we extend these investigations to a quite
general three-terminal setup. We shall thus explore the non-
equilibrium current in all three terminals in presence of a
transport voltage between the source and drain electrodes, an
applied tip voltage, and also a tunable gate voltage. This
enables us to address various physical phenomena that are of
relevance for recent experiments. Among other effects, we
discuss the influence of the tip on the transport along the
interacting wire even when no net current is injected from
the tip into the wire. In particular, we focus on the Fabry-
Pérot transport regime of the wire, which could be recently
observed in carbon nanotubes10,14,19,20 and analyze how
Fabry-Pérot oscillations are modified by both the presence of
the tip and the electron-electron interaction. To this purpose,
the finite length of the wire, the contact resistances at the
interfaces between the wire and the side electrodes, as well
as an arbitrary position of the tip along the 1D wire are taken
into account in our model. Furthermore, inspired by recent
experiments on semiconductor quantum wires,12,21 we allow
for an asymmetry in electron tunneling from the tip and in-
vestigate how the presence of side electrodes affects the frac-
tionalization of charges injected by the tip into an interacting
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wire. Finally, regarding the experimental observation of in-
teraction effects, we discuss the advantages of a three-
terminal setup over a two-terminal one.

The paper is organized as follows. In Sec. II we describe
the model that we adopt for the setup. In Sec. III we provide
results about the electric current in the case of a noninteract-
ing wire, while Sec. IV is devoted to the effects of electron-
electron interaction. Finally, we shall discuss the results in
Sec. V and present our conclusions. Some more technical
details are given in Appendixes A and C.

II. MODEL

We consider a single-channel spinless quantum wire con-
nected, as sketched in Fig. 1, to two metallic electrodes,
source �S� and drain �D�, as well as to a third sharp electrode,
henceforth denoted as tip �T�. The wire has a finite length L,
and for the x coordinate along it we choose the origin in the
middle of the wire so that the interfaces to the S and D
electrodes are located at x1=−L /2 and x2= +L /2, respec-
tively. Electron backscattering at the side contacts due to
nonadiabatic coupling is modeled by two deltalike scatterers.
The tip is described as a semi-infinite noninteracting Fermi
liquid, and y�0 denotes the coordinate axis along the tip
orthogonal to the wire, the origin corresponding to the injec-
tion point on the tip. The latter is located at position x0 with
respect to the middle of the wire, and electron injection is
modeled by a tunnel Hamiltonian. We also envisage the pres-
ence of a metallic gate �G�, biased at a voltage VG. Screening
by this gate yields an effectively short-ranged electron-
electron interaction potential within the wire, for which the
LL model applies.22–24 The total Hamiltonian of the system
reads

H = HW + HT + Htun, �1�

where the first term describes the wire and its coupling to the
S and D electrodes as well as to the gate. The second term
accounts for the tip, and the last one describes wire-tip tun-
neling.

As far as the wire is concerned, we shall address here the
low-energy regime, where the wire electron band can be lin-
earized around the Fermi level. Then the wire electron op-
erator ��x� can be decomposed into right-moving and left-
moving components �+�x� and �−�x�,

��x� = e+ikWx�+�x� + e−ikWx�−�x� , �2�

where kW denotes the equilibrium Fermi momentum of the
wire. By definition, this is the Fermi momentum in case that
the electrochemical potentials of all electrodes, source, drain,
tip, and gate, are identical. This corresponds to vanishing
applied voltages. Explicitly the Hamiltonian of the wire
reads

HW = Hkin,W + H� + H�W
+ HU. �3�

In Eq. �3� the first term,

Hkin,W = − i�vW�
−�

�

dx�:�+
†�x��x�+�x�:− :�−

†�x��x�−�x�:� ,

�4�

describes the band energy linearized around the wire Fermi
points �kW and characterized by a Fermi velocity vW. The
symbol “: :” stands for normal ordering with respect to the
equilibrium ground state. The second term models scatterers
at the interfaces25,26 with the S and D electrodes,

H� = �vW �
i=1,2

�i��xi� , �5�

where the dimensionless parameters �i	0 denote the
impurity strengths at the contacts xi, and the term ��x�
= :�†�x���x�: is the electron-density fluctuation with
respect to the equilibrium value. The third term in Eq. �3�,

H�W
= �

−�

+�

�W�x���x�dx , �6�

with

�W�x� = �eVS for x 
 − L/2
eVG for − L/2 
 x 
 L/2
eVD for x � L/2,

� �7�

accounts for the bias VS and VD of the source and drain
electrodes, as well as for the gate voltage VG. The applied
transport voltage is then V=VS−VD. Finally, the last term,

HU =
U

2
�

−L/2

L/2

dx �
r,r�=�

:�r�x��r��x�: , �8�

describes the screened Coulomb interaction in the wire,22,23

where �r�x�= :�r
†�x��r�x�: is the density fluctuation of

r-moving electrons. As it is customary in LL theory, in the
sequel, we characterize the interaction strength by the dimen-
sionless coupling constant,

g = 	1 +
U

��vW

−1/2

. �9�

The Hamiltonian of the tip, the second term in Eq. �1�,
reads

HT = Hkin,T + H�T
. �10�

Here

x0

γ+γ−
λ1 λ2

S D

G

T

FIG. 1. �Color online� Sketch of the setup. A quantum wire is
connected to two metallic electrodes, denoted as source �S� and
drain �D� at voltages VS and VD, respectively. A third sharp elec-
trode, denoted as tip �T�, at voltage VT, injects electrons into the
wire at position x0. A gate �G� is also present and held at a gate bias
voltage VG. The contact resistances are accounted for by two delta-
like scatterers with strengths �1 and �2, and the electron tunneling
amplitudes between the tip and the wire are denoted by 
�.
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Hkin,T = − i�vT�
−�

�

dy:c†�y��yc�y�: �11�

describes the �linearized� band energy with respect to the
equilibrium Fermi points �kT of the tip, and vT denotes the
Fermi velocity. Notice that the integral runs also over the
positive y axis since right-moving and left-moving electron
operators along the physical tip axis y
0 have been un-
folded into one chiral �right-moving� operator c�y� defined
on the whole y axis. The second term in Eq. �10� describes
the bias VT applied to the tip which affects the incoming
electrons according to

H�T
= eVT�

−�

0

dy:c†�y�c�y�: . �12�

Finally, the third term in Eq. �1� accounts for the wire-tip
electron tunneling and reads

Htun = ��vWvT�
r=�


r�e−irkWx0�r
†�x0�c�0� + H.c.� , �13�

where 
r is the dimensionless tunneling amplitude for
r-moving electrons, and x=x0 �y=0� is the coordinate of the
injection point along the wire �tip�. Here, we have allowed
for an asymmetry of the tip tunneling amplitudes of right-
moving and left-moving electrons, which can arise from the
presence of a magnetic field.12,21,27 Note that for 
+�
− the
Hamiltonian is not invariant under time-reversal symmetry.

In Secs. III and IV the electron current will be evaluated
in the three terminals of the described setup. Explicitly we
shall compute

I�x,t� = evW�:�+
†�x,t��+�x,t�:− :�−

†�x,t��−�x,t�:
 ,

�14�

where x, with �x��L /2, is a measurement point located in
the S or D leads. As far as the tip is concerned, due to the
unfolding procedure described above, the electron current
flowing in the tip at a point y�0 acquires the form

I�y,t� = evT�:c†�y,t�c�y,t�:− :c†�− y,t�c�− y,t�:
 . �15�

In Eqs. �14� and �15� the averages are computed with respect
to the stationary state in presence of the applied dc voltages
VS, VD, VT, and VG.

Under these conditions, the current in each electrode is
actually independent of the measurement point. We thus de-
note by IS and ID the currents flowing in the source and drain
electrodes. The current IS is positive when flowing into the
wire, while ID is positive when flowing out of the wire. The
current IT flowing in the tip is positive when flowing in the
direction of the tip-wire tunnel contact. Current conservation
then implies ID= IS+ IT so that all currents can be expressed
in terms of two independent quantities. One can write

IS = IM − IT/2, �16�

ID = IM + IT/2, �17�

where IM describes the current flowing in the wire under the
condition that no net current flows through the tip �voltage

probe configuration�. Importantly, IM should not be identified
with the two-terminal current flowing in the absence of the
tip. Indeed, while 
�=0 implies that IT=0, the opposite does
not hold so that IM needs to be evaluated by accounting for
the whole three-terminal setup.

III. NONINTERACTING CASE

In this section we first discuss results for the case that the
electron interaction �Eq. �8�� is neglected. Then Hamiltonian
�1� of the whole system is quadratic in the fields ���x� and
c�y�, and transport properties can be determined within the
Landauer-Büttiker formalism. In the three-terminal setup that
we are considering, the scattering matrix S�E� is a 3�3
matrix which depends on the energy E measured with respect
to the equilibrium wire-lead Fermi level. The currents IM and
IT defined through Eqs. �16� and �17� read as

IM =
e

h� 1

2
�

−�

�

��S12�2 + �S21�2��fS�E� − fD�E��dE

+
1

2
�

−�

�

�S13�2�fS�E� − fT�E��dE

+
1

2
�

−�

�

�S23�2�fT�E� − fD�E��dE� , �18�

and

IT =
e

h
�

−�

�

dE��S31�2�fT�E� − fS�E�� + �S32�2�fT�E� − fD�E��� .

�19�

In the S-matrix elements appearing in Eqs. �18� and �19� the
source, drain, and tip electrodes are identified as 1, 2, and 3,
respectively, whereas their Fermi functions are denoted as fS,
fD, and fT. Note that the S-matrix is in general not symmet-
ric because time-reversal symmetry is broken for 
+�
−.
The S-matrix can straightforwardly be evaluated with
standard techniques by combining the transfer matrices Mxi
�i=1,2� of the two side contacts,

Mx1,x2
= � e−iuG/2�1 − i�1,2� �ie�i�2�−uG+2�W�/2�1,2 0

ie�i�2�−uG+2�W�/2�1,2 eiuG/2�1 + i�1,2� 0

0 0 1
� ,

�20�

with the one, Mx0
, at the tip injection point,
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Mx0
=

1

1 + �
+
2 − 
−

2�/4� 1 − �
+
2 + 
−

2�/4 − e−2i��+�W−uG��0
+
−/2 − ie−i��+�W−uG��0
+

e2i��+�W−uG��0
+
−/2 1 + �
+
2 + 
−

2�/4 iei��+�W−uG��0
−

− iei��+�W−uG��0
+ − ie−i��+�W−uG��0
− 1 − �
+
2 − 
−

2�/4
� . �21�

Here, we have introduced the ballistic frequency,

�L =
vF

L
, �22�

associated with the length of the wire, and the following
dimensionless quantities:

�0 =
x0

L
, �23a�

�W = kWL , �23b�

uG =
eVG

��L
, �23c�

� =
E

��L
. �23d�

The scattering matrix is obtained as a combination of the
elements of the transmission matrix M=Mx2

Mx0
Mx1

in the
form,

S = M22
−1 � � − M21 1 − M23

M11M22 − M12M21 M12 M13M22 − M12M23

M31M22 − M21M32 M32 M33M22 − M23M32
� ,

�24�

where Mij are the matrix elements of M.

A. Fabry-Pérot oscillations in a two-terminal setup

Before discussing the influence of the STM tip, we shortly
describe the transport properties in the absence of the tip, i.e.,
for 
�=0. In this case we have a two-terminal setup with
IT=0 and IS= ID= IM. The solid line in Fig. 2 shows the two-
terminal conductance dIM /dV at zero temperature plotted in
units of e2 /h as a function of the �dimensionless� source-
drain bias,

u =
e�VS − VD�

��L
, �25�

for identical contact impurity strengths �1=�2. For �i�1 the
conductance shows the typical Fabry-Pérot oscillations with
maximum values close to one. For carbon nanotubes the
Fabry-Pérot regime of highly transparent contacts could be
reached experimentally only recently due to progress
achieved in device contacting.10,14,19,20 In the sequel, we will
focus on this regime.

The electron current IS= ID= IM can be written as

IM = I0 + Iimp, �26�

where I0= �e2 /h�V represents the current of a perfectly con-
tacted wire, and Iimp characterizes the �negative� correction
due to the contact resistances. The exact expression for Iimp,
which can be gained from the S matrix, is not easily trac-
table for arbitrary impurity strengths and temperature. In the
Fabry-Pérot regime at zero temperature, however, a simpler
expression is obtained by expanding in terms of the impurity
strengths. To third order in the �i’s one obtains

Iimp =
e�L

2�
�jinc + jcoh� , �27�

where jinc and jcoh are the dimensionless quantities describ-
ing the incoherent and coherent contributions, respectively,
to the reduction in the current caused by the contact impuri-
ties. The term

S

Symmetric tunneling
− +γγ =

D

T

0 5 10 15 20 25 30

0.7

0.8

0.9

1

u

dI
M
/dV

(e2
/h)

(b)

(a)

FIG. 2. �Color online� Zero-temperature differential conduc-
tance as a function of the source-drain bias for a noninteracting wire
characterized by contact impurity strengths �1=�2=0.1 and a Fermi
wave vector �W=0.3. The tip is located in the middle of the wire
and the tip voltage VT is adjusted to fulfill the condition IT=0.
Tunneling is symmetric ��=0�, and the tunneling strength has the
values: 
=0 �solid line�, 
=0.1 �dashed-line�, 
=0.5 �dashed-
dotted line�, and 
=1 �dotted line�. The gate is grounded �VG=0�,
and the bias is applied symmetrically �VS/D= �V /2�.
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jinc = − �
i=1,2

�i
2u �28�

is linear in the applied bias voltage, and the coefficient of
proportionality is the “classical” series resistance of two im-
purities. In contrast, the term jcoh stems from quantum inter-
ference between scattering processes. This interference leads
to the Fabry-Pérot oscillations of jcoh. Explicitly,

jcoh = jcoh
�2� + jcoh

�3� , �29�

where

jcoh
�2� = − 2�1�2 cos�2�uW + �W − uG��sin�u� , �30�

and

jcoh
�3� = − 2��1�2

2 + �1
2�2�sin�2�uW + �W − uG��sin�u� ,

�31�

where we have introduced

uW =
e�VS + VD�

2��L
. �32�

From Eqs. �30� and �31� one can see that Fabry-Pérot oscil-
lations arise both as a function of the source-drain bias u and
as a function of the gate voltage uG. Note that for a nonin-
teracting system the period in the former case is twice as
large as the period in the latter case.

We also emphasize that jcoh
�3� originates from impurity

forward-scattering processes �more precisely from second or-
der in backward scattering and first order in forward scatter-
ing�. Forward-scattering processes are typically neglected in
single impurity problems, where they can be gauged away.
However, when two or more impurities are present they af-
fect the coherent part of transport. Although this contribution
is in general smaller than jcoh

�2� , it becomes the dominant term
for the Fabry-Pérot oscillations when jcoh

�2� vanishes, which is
the case for

4

�
	kWL +

e�VS + VD − 2VG�
2��L


 � odd integer. �33�

Thus, the third-order term is crucial for certain values of the
biasing voltage.

We conclude the discussion of the two-terminal case by
emphasizing that for a noninteracting wire in the Fabry-Pérot
regime the current depends not only on the difference
VS−VD, but in general on VS and VD separately. This is sim-
ply due to the fact that Fabry-Pérot interference effects lead
to an energy-dependent transmission coefficient and, hence,
to nonlinearity in the applied bias. Notice that Eqs. �28�,
�30�, and �31� fulfill the gauge-invariance condition empha-
sized by Büttiker28 since they are invariant under an overall
shift of the potentials Vp→Vp+const �p=S,D,G�.

B. Effect of the tip on Fabry-Pérot oscillations

In this section we shall address, within the noninteracting
electron approximation, the effect of the STM tip on the
Fabry-Pérot oscillations. When 
��0, the currents IM and IT
are nonvanishing for arbitrary values of the applied voltages

VS, VD, and VT. We analyze the effects of the tip as a func-
tion of the total tunneling strength 
, defined through


2 =

+

2 + 
−
2

2
, �34�

the tunneling asymmetry coefficient,

� =

+

2 − 
−
2


+
2 + 
−

2 ��� � 1, �35�

and the position x0 of the tip.
We start by considering the situation where the tip be-

haves as an electron injector: a bias is applied between the
tip and the source and drain electrodes, which, for simplicity,
are assumed to be at the same electrochemical potential. A
quite standard calculation applies to the case of fully sym-
metric tunneling ��=0�, allowing, e.g., to relate the local
density of states in the wire to the nonlinear conductance as
a function of the tip-wire bias. Here, we shall instead focus
on the case of fully asymmetric tunneling ��= �1�, which
has become of particular interest due to recent experiments
where only right-moving or only left-moving electrons could
be selectively tunneled into a semiconductor quantum wire
due to the presence of a magnetic field normal to the plane of
the wire and the tip.21 We find that novel physical aspects
emerge from a tunneling asymmetry. In the first instance, a
direct inspection of the scattering matrix �Eq. �24�� shows
that its elements Sij are independent of x0, implying that,
differently from the case of symmetric tunneling �=0, the
lead currents ID and IS do not depend on the position of the
tip. Furthermore, asymmetric tunneling can be used to ex-
tract the transmission coefficient of each contact. Indeed
evaluating the asymmetry,

A��� � ��ID� − �IS�
�ID� + �IS�

�
�

, �36�

between ID and IS in the two cases of totally asymmetric
injection only to the right ��=1� and only to the left ��
=−1�, one obtains

A+ =
1 + �1

2 − �2
2

1 + �1
2 + �2

2 �37�

and

A− =
1 + �2

2 − �1
2

1 + �1
2 + �2

2 , �38�

where A�= �A��1�. From these coefficients it is straight-
forward to extract the strengths of the contact impurities,

�1
2 =

1 − A−

A+ + A−
,

�2
2 =

1 − A+

A+ + A−
, �39�

as well as the transmission coefficients,

ELECTRON TUNNELING INTO A QUANTUM WIRE IN THE… PHYSICAL REVIEW B 79, 035121 �2009�

035121-5



T1,2 �
1

1 + �1,2
2 =

A+ + A−

1 + A�

, �40�

related to each of the two contacts.
Notice that, while IS and ID depend on the temperature T,

Eqs. �37� and �38� are independent of T within the approxi-
mation of a linearized band. Interestingly, these equations
also enable one to identify the relation between the current
asymmetry coefficients A� and the two-terminal conduc-
tance G2t=�IM /�V �
=0. In Ref. 27, the equality A�

=G2t / �e2 /h� is claimed to hold for a setup with symmetric
contacts to the leads even in the presence of interactions.
However, Eqs. �37� and �38� show that for a quantum wire in
the Fabry-Pérot regime even in the absence of interactions
and with perfectly symmetric contacts �1=�2, one has

A+ = A− � G2t/�e2/h� �41�

since A�=1 / �1+2�1
2� is a constant, whereas G2t depends on

temperature, source-drain bias, and gate voltage. The equal-
ity sign in Eq. �41� holds only under the specific circum-
stances of perfectly transmitting contacts ��1,2=0�, or of a
perfectly symmetric setup ��1=�2�0� at sufficiently high
temperatures kBT���L, where Fabry-Pérot oscillations of
G2t wash out.

The second situation that we want to investigate is when

the tip voltage VT is set to an appropriate value V̄T so that no
net current flows through the tip. This corresponds to a situ-
ation where the tip behaves as a voltage probe.29 Notice that,
even under the condition IT=0, electrons can tunnel from the
tip to the wire and vice versa, and therefore the tip does
affect the electron transport between source and drain.

We start by describing the case of symmetric tunneling
��=0� with the tip located in the middle of the wire �x0=0�.
The differential conductance dIM /dV, evaluated under the
condition IT=0, is depicted in Fig. 2 as a function of the
source-drain bias �Eq. �25��, for different values of 
, rang-
ing from weak to strong tunneling. The tip has three main
effects on the Fabry-Pérot oscillations: �i� an overall suppres-
sion of the conductance, �ii� a modulation of the maxima and
minima, and �iii� a reduction in the visibility of the oscilla-
tions.

The origin of the first effect can be illustrated already
in the case of a clean wire ��i=0�, where it is easy to show
that the condition IT=0 is fulfilled for a tip voltage

V̄T= �VS+VD� /2, and that

IM =
e2

h

VS − VD

1 + 
2/2



e2

h
�VS − VD� . �42�

Notice that a reduction in the conductance already shows up
to order 
2 in the tunneling strength. The reason for this
suppression of the current is that a fraction of the electron
flow originating from the source is diverted into the tip due
to the tip-wire coupling. While the condition IT=0 ensures
that the same electron current is reinjected into the wire, for
symmetric tunneling the tip injects �with equal probabilities�
both right-moving and left-moving electrons. Hence half of
the injected current flows back to the source electrode, caus-
ing the reduction in the two-terminal conductance. As we

shall see below, the situation is different in the case of asym-
metric tunneling.

The second feature that can be observed in Fig. 2 is an
alternating depth of the Fabry-Pérot minima. This modula-
tion originates from the interference between different paths
that are possible for an electron ejected from the tip. For
instance, the path of an electron ejected as right mover to-
ward the drain can interfere with the path starting as left
mover toward the source followed by an elastic backscatter-
ing at the source contact. The difference in length between
these paths corresponds to a new frequency in the oscilla-
tions, which causes the modulation of the peaks. In the case
of Fig. 2, where the tip is located in the middle, this addi-
tional frequency equals twice the Fabry-Pérot frequency so
that the tip affects every second minimum in the same way.
As we shall see below, in general, the modulation pattern
depends both on the asymmetry coefficient and on the posi-
tion of the tip. The modulation effect arises to order 
2�
when we treat the impurity strength and tunneling ampli-
tudes as perturbation parameters.

The third effect of the tip consists in a reduction in the
visibility of the Fabry-Pérot oscillations: in the presence of
the tip the relative separation between maxima and minima
decreases. This reduction stems from the decoherence intro-
duced by the tip since the probability of constructive inter-
ference between paths with two backscattering processes at
the contacts decreases when electrons can be incoherently
absorbed and re-ejected by the tip. Notice that the reduction
in visibility is of order of 
2�2, and it is therefore negligible
with respect to the modulation effect in the Fabry-Pérot re-
gime.

Let us now discuss the role of asymmetric tunneling in the
voltage-probe configuration. When ��0, the effect of con-
ductance suppression is less pronounced then for symmetric
tunneling. This can be seen already in the case of a clean
wire ��i=0�, where

IM =
e2

h
�VS − VD�

2 + 
2�2

2 + 
2 , �43�

and the value V̄T of the tip voltage ensuring IT=0 is given by

V̄T =
1

2
�VS�1 + �� + VD�1 − ��� . �44�

As one can see from the last factor in Eq. �43�, the suppres-
sion of the current IM is completely absent for fully asym-
metric tunneling �= �1. Importantly, this feature persists
also in the presence of realistic contacts ��i�0�, as shown in
Fig. 3, where the differential conductance dIM /dV is plotted
as a function of the source-drain voltage for several values of
the tunneling strength 
. Increasing the tunneling strength
simply decreases the amplitude of the Fabry-Pérot oscilla-
tions but does not change the average value of the conduc-
tance. Two more noteworthy features can be observed: in the
fully asymmetric case also the modulation of the peaks is
absent, and the nonlinear conductance is independent of the
tip position. The reason lies in the specific tunneling condi-
tions. For example, a right-moving electron ejected by the tip
cannot be readsorbed after scattering as a left-moving one,
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and this rules out interference effects between electrons trav-
eling through the tip and electrons that have undergone an
odd number of backscattering events at the contacts. Such
processes would give rise to effects related to the tip posi-
tion, while interference phenomena with electrons that have
undergone an even number of backscattering events, which
continue to be present also for �= �1, are independent of
the tip position. Moreover, in the completely asymmetric
case, electrons passing through the tip continue to move in
the same direction, and this is the reason why, also for strong
tunneling, the average value of the differential conductance
is independent of 
.

Finally, we analyze the dependence of the differential
conductance on the tip position. For simplicity we limit this
discussion to the case of symmetric tunneling illustrated in
Fig. 4. Apart from the conductance suppression discussed
above, one sees that the modulation effect exhibits a strong
dependence on the tip position. In particular, when the tip is
close to a contact impurity, we observe Fabry-Pérot-type os-
cillations overimposed by an oscillation with large period
due to coherent motion of carriers between the tip and the
contact impurity remote from the tip.

IV. INTERACTING CASE

In this section we discuss the three-terminal setup in pres-
ence of electron-electron interaction. For arbitrary values of

the interaction strength, contact resistances, and tunneling
amplitudes an analytical treatment is not possible, therefore
we focus here on the Fabry-Pérot regime. In this regime,
characterized by highly transparent contacts to the elec-
trodes, the role of interactions has so far only been analyzed
for a two terminal setup.25,26 Since the impurity strengths �i
are small, they can be treated perturbatively. The electron-
electron interaction �Eq. �8�� will be accounted for exactly
using bosonization. The evaluation of the currents in the
three terminals will be based on the out-of-equilibrium
Keldysh formalism.30 We shall first discuss the effects of
electron-electron interaction for the two-terminal setup in the
Fabry-Pérot regime, i.e., in the absence of the tip, and then
turn to the combined effect of tip and electronic correlations.

A. Interaction effects on Fabry-Pérot oscillations in a
two-terminal setup

Let us first analyze the effects of electron-electron inter-
action for a contacted wire without tip. As in the noninter-
acting case, for 
�=0 the problem is reduced to a two-
terminal setup, where IT=0 and IS= ID= IM. Furthermore, IM
can again be written as a sum of the current I0 in a wire with
adiabatic contacts and Iimp, see Eq. �26�. Importantly, while
I0 is unaffected by the interaction in the wire,22,23 the current
Iimp, accounting for the contact resistances, is strongly modi-
fied by the interaction. One can still decompose Iimp into
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FIG. 3. �Color online� Zero-temperature differential conduc-
tance as a function of the source-drain bias for a noninteracting wire
with contact impurity strengths �1=�2=0.1 in presence of a tip with
an applied voltage VT adjusted to fulfill the condition IT=0. Tun-
neling is totally asymmetric ��=1�, and the tunneling strength has
the values 
=0.3 �dotted line� and 
=0.7 �dashed line�. The solid
line represents the case with 
=0. The result is independent of the
tip position x0. The gate is grounded �VG=0�, and the bias is applied
symmetrically �VS/D= �V /2�.
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FIG. 4. �Color online� Zero-temperature differential conduc-
tance as a function of the source-drain voltage for a noninteracting
wire for several values of the tip position x0=0 �solid line�,
x0=0.17 �dotted line�, and x0=0.41 �dashed line�. Tunneling has
amplitude 
=1 and is symmetric ��=0�. The contact impurities
have equal strengths �1=�2=0.1. The gate is grounded �VG=0�, and
the bias is applied symmetrically �VS/D= �V /2�.
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Iimp =
e�L

�

2�
�jinc + jcoh� , �45�

where jinc is the sum of two terms related to a single impurity
each and jcoh describes the interference between scattering
processes at the two impurities. Here, an important differ-
ence emerges with respect to the noninteracting case. The
Fermi velocity in the wire is enhanced by the interaction
parameter g, leading to a higher ballistic frequency,

�L
� =

�L

g
. �46�

Moreover, the interaction is also affecting the strength of the
contact impurities: the forward-scattering processes are left
unchanged, whereas the backscattering ones are
renormalized,31

� → ��B,i
� = ��W

g−1,

�F,i = � ,
� �47�

where �W=aW /gL is a small dimensionless cut-off param-
eter. The cut-off length aW, which is related to the lattice
spacing or the electronic bandwidth of order of �vW /aW, is
introduced in Appendix B.

In the Fabry-Pérot regime we can again restrict ourselves
to terms up to third order in the contact impurity strengths �i.
Then, the incoherent and the coherent contributions can be
written as

jinc = �
i=1,2

jinc,i, �48�

and

jcoh = jcoh
�2� + jcoh

�3� , �49�

with

jinc,i = ��B,i
� �2Dii�u� , �50�

and

jcoh
�2� = 2�B,1

� �B,2
� D12�u�cos�2��W + g�uW − uG��� , �51�

jcoh
�3� = 2�B,1

� �B,2
� ��F,1 + �F,2�D12�u�

�g2 sin�2��W + g�uW − uG��� , �52�

where we have introduced

Dij�u� =
2

��W
2g�

0

�

d� sin�u��

� sin�4�I����i;� j;���e4�Rreg
����i;�j;��. �53�

The dimensionless voltages u, uW, and uG are now scaled by
the factor e /��L

� compared to the physical voltages VS−VD,
�VS+VD� /2, and VG, respectively. In the expression for Dij,
the dimensionless integration time is defined as �=�L

�t, and
the functions Rreg

���� ;�� ;�� and I���� ;�� ;�� are the real and
imaginary parts, respectively, of the autocorrelation function
of the bosonic phase field � introduced in Appendix B. The
quantity Dij defined in Eq. �53� is cut-off independent since

the cut-off dependence of the prefactor is compensated by
the correlation functions. Explicit results for the phase field
autocorrelation function have been given in a previous
paper.32 Further, the �i=xi /L �i=1,2� are dimensionless con-
tact impurity positions. Equations �50�–�52� are obtained
from a perturbative development of the current in the impu-
rity strengths �i employing the methods described in Appen-
dixes A and B. The current jcoh

�3� in Eq. �52� includes forward-
scattering processes that give rise to the factor �F,1+�F,2 and
a twofold backscattering contribution leading to the factor
�B,1

� �B,2
� .

Another important effect of the interaction is that the in-
coherent term jinc does not depend linearly on the bias as in
the noninteracting case. Instead, it exhibits oscillations of
period �u=� due to the interplay between backward scatter-
ing at one contact impurity and Andreev-type reflection at
the other contact.32 On the other hand, the coherent term jcoh
responsible for Fabry-Pérot oscillations shows a power-law
suppression with increasing voltage.25,26 Thus, in the pres-
ence of interaction two types of oscillations are present,
namely, the Fabry-Pérot ones �already existing for a nonin-
teracting wire and modified by the interaction� and the
Andreev-type ones �purely due to the interaction�. These two
types of oscillations are characterized by the same period in
the source-drain bias, and they are of the same order in the
impurity strength if we assume that the two contact transpar-
encies are comparable ��1��2�. It is therefore difficult to
distinguish the two phenomena from an inspection of the
two-terminal differential conductance, which is shown in
Fig. 5 as a function of the source-drain bias for various val-
ues of the interaction parameter g. Besides the power-law
suppression of the amplitude at high applied bias, we see that
for strong interaction �g
1 /2� the sinusoidal behavior of the
oscillations is deformed into a sawtoothlike shape. Further-
more, although the total current �Eq. �26�� in the presence of
contact resistances is always smaller than the current I0 of an
ideally contacted wire �Iimp�0�, the differential conductance
may exceed e2 /h. This is a well-known effect of nonlinear
transport in Luttinger liquids,33 reflecting the fact that the
conductance cannot be expressed in terms of single-particle
transmission coefficients. In Sec. V we shall comment on
how the two types of oscillations may be experimentally
distinguished in a three-terminal setup.

Further interesting insights emerge from the analysis of
the conductance dIM /dV as a function of both the source-
drain bias V=VS−VD= ���L

� /e�u and the gate bias VG
= ���L

� /e�uG. Corresponding conductance plots are shown in
Fig. 6. Panels �a�, �b�, and �c� refer to three different values
of the interaction strength g, in the case of a symmetrically
applied source-drain bias, uS/D= �u /2. The oscillations of
the conductance as a function of V and VG are characterized
by two periods �V and �VG. The period �V coincides with
the period of the function D12�u� �Eq. �53�� appearing in the
coherent terms �Eqs. �51� and �52�� since the functions
D11�u� and D22�u� related to the incoherent contribution �Eq.
�50�� exhibit the period �V /2. We thus recover the result of
Ref. 26. On the other hand, the period �VG in the gate volt-
age is determined by the sinusoidal factors of Eqs. �51� and
�52�. The values of �V and �VG depend on the interaction
strength g and are inversely proportional to g and g2, respec-
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tively. Interestingly, the ratio of these periods yields the Lut-
tinger liquid interaction strength, �V /�VG=�u /�uG=2g, as
can be checked from the table associated with Fig. 6.

Panel �d� describes the case of an asymmetrically applied
bias �uS=u and uD=0� for the same interaction strength as
panel �b�. In this case uW=u /2 �see Eq. �32�� so that an
additional dependence on V arises from the sinusoidal factors
of Eqs. �51� and �52�, and the period in V at fixed VG
changes. For this reason the two-dimensional pattern of the
nonlinear conductance is twisted with respect to panel �b�.
However, the quantities �V and �VG related to a symmetri-
cally applied bias can still be obtained, e.g., by projecting the
conductance maxima on the V axis and measuring the dis-
tance between these projections as indicated by the arrows in
panel �d�. The value of g can therefore be extracted also in
this case as �u /�uG=2g. We remark that a qualitatively
similar twist of the conductance pattern has recently been
observed in carbon nanotubes.19

Conductance plots as a function of the transport and gate
voltages have previously been discussed in the context of
carbon nanotubes in Refs. 25 and 26. We point out that the
way we introduce the bias and gate voltages in our model
�see Eq. �6�� differs from the one adopted in the above pa-
pers. Our approach accounts for several basic physical facts.
In a nonchiral quantum wire only the electrochemical poten-
tials of the leads can be controlled experimentally, whereas
the electrochemical potentials of right and left movers inside
the wire are a result of the biasing of the wire and its screen-
ing properties. As a consequence, the source and drain bi-
ases, VS and VD, are applied here only in the related leads.

This is in accord with a basic hypothesis underlying the defi-
nition of an electrode, namely, that inelastic processes in the
lead equilibrate absorbed electrons, yielding a voltage drop
at the contacts even in the absence of contact impurities. On
the other hand, the charge density of metallic electrodes is
typically insensitive to a gate due to their electroneutrality.
For this reason, in our model the gate voltage VG is applied
only to the interacting wire and not to the leads.

The precise form of the coupling to the biasing voltages
adopted in the model has implications on the behavior of the
current as a function of bias and gate voltages. We find that
the dependence on VG and �VS+VD� /2 involves a factor g2,
as shown, for instance, in Eqs. �51� and �52�. �In the dimen-
sionless formulation one factor of g is contained in the defi-
nition of the dimensionless quantities uG and uW.� The dif-
ference �VS+VD� /2−VG is proportional to the bare electron
charge injected into the wire, whereas the g2 factor originates
from the partial screening occurring in a Luttinger liquid34

and physically describes the fraction of the bare charge that
remains unscreened. In particular, in the limit g→0 of an
electroneutral wire we obtain that the current depends only
on the difference VS−VD and is independent of the gate, as it
should be.

On a more formal level, these physical properties are en-
coded in the zero modes �0,��x� �see Eq. �B13��. Indeed, the
transformation ��→��+�0,� of the chiral boson fields
gauges away bias term �6�. We note that, differently from the
homogenous Luttinger liquid case, in the presence of leads
the zero modes cannot be just linear functions of the position
uniformly along the entire system. The inhomogeneity of the
system leads to a nontrivial space dependence of the zero
modes �0,��x�, which can be obtained from the boson
Green’s function of the inhomogeneous LL model, as shown
in Eq. �B14�.

B. Interaction effects on electron tunneling from the tip:
The case of adiabatic contacts

We shall now consider the full three-terminal setup and
discuss the effects of the wire electron-electron interaction
on tunneling from the tip, both for the case of electron injec-
tion and in the voltage-probe configuration. We start by pre-
senting results for a wire with adiabatic contacts ��i=0�. For
a noninteracting wire, the calculation described in Sec. III
yields

IT =
e2

h

8
2

�2 + 
2�2	VT −
1 + �

2
VS −

1 − �

2
VD
 , �54�

and

IM =
e2

h

1

�2 + 
2�2 �VS�4 + 2
2�1 − � + 
2�2��

− VD�4 + 2
2�1 + � + 
2�2�� + 4�
2VT� , �55�

where 
 is the total tunneling strength defined in Eq. �34�
and � is the tunneling asymmetry parameter introduced in
Eq. �35�. Thus, in the absence of interaction, the currents
depend linearly on the three applied voltages and are inde-
pendent of the position x0 of the tip.
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FIG. 5. �Color online� Differential conductance of the two-
terminal setup �in the absence of a tip� as a function of the source-
drain voltage for several values of the interaction parameter g=1
�solid line�, g=0.75 �dashed line�, and g=0.25 �dotted line�. The
contact impurities have equal strengths �B,1

� =�B,2
� =0.1. The gate

voltage is VG=0, and the bias is applied symmetrically
�VS/D= �V /2�.
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When electron-electron interaction is taken into account,
an exact solution of the tunneling problem is not possible for
arbitrary values of the tunneling amplitudes 
�. We shall
assume that 
��1, consistent with the tunnel Hamiltonian
approach, and provide results to leading order in perturbation
theory. The currents in the source and drain leads are again
written as in Eqs. �16� and �17�, where IM and IT are evalu-
ated now to order 
2 yielding

IM = I0 + IM,
2, �56�

and

IT = IT,
2, �57�

where

IM�T�,
2 =
e�L

�

2�
�
��2jM�T�,
2. �58�

Here
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FIG. 6. �Color online� The differential conductance dIM /dV �in units of �e�L
� /2��� of the two-terminal setup �in the absence of a tip� is

shown as a function of the dimensionless source-drain bias u and the dimensionless gate voltage uG. The strengths of the contact impurities
are equal and are characterized by �F,i=0.1 and �B,i

� =0.25. In panels �a�, �b�, and �c� the source-drain voltage is applied symmetrically,
uS/D= �u /2, and the interaction parameter is g=0.25, 0.34, and 0.46, respectively. The dashed-dotted lines in panels �b� and �d� are a guide
for the eyes to identify the periodic pattern of the Fabry-Pérot oscillations determined by the periods �u and �uG. Their ratio yields the value
of g, as shown in the table for the three cases. In panel �d� the source-drain voltage is applied asymmetrically �uS=u and uD=0� to a wire
with interaction strength g=0.34. When compared with panel �b� for the same interaction strength, the asymmetric bias twists the pattern.
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� = 
�W
�g+g−1−2�/4 �59�

is the tunneling amplitude renormalized by the electron-
electron interaction. The dimensionless currents jM�T�,
2 read
as

jM�T�,
2 =
2

��T�W
�g+g−1�/2�

0

�

d�QM�T����sin�4��I�+�+��0;�0;��

+ I���0;0;����e4��Rreg
�+�+��0;�0;��+Rreg

���0;0;���, �60�

where

QM��� = sin�u�/2�cos��uW − uT���

+ � cos�u�/2�sin��uW − uT��� ,

QT��� = 2 cos�u�/2�sin��uW − uT���

+ 2� sin�u�/2�cos��uW − uT��� . �61�

Here �T is a small dimensionless cut-off parameter for the tip
defined in Appendix B. The functions Rreg

�+�+�� ;�� ;�� and
I�+�+�� ;�� ;�� are the real and imaginary parts of the auto-
correlation function of the chiral wire field �+ defined in
Eqs. �C7� and �C8�, respectively, while Rreg

���� ;�� ;�� and
I���� ;�� ;�� are the real and imaginary parts of the correlator
of the tip field � given in Eqs. �C11� and �C12�. The integral
�Eq. �60�� is a cut-off independent quantity.

We consider two parameter domains of the three-terminal
setup corresponding to the cases where the tip operates as an
electron injector and as voltage probe, respectively. In the
electron injection case, source and drain are at the same elec-
trochemical potential while a bias is applied to the tip. For
this configuration the current noise was evaluated in Refs. 17
and 18. Here we shall explicitly evaluate the nonlinear tun-
neling conductances,

GST � ��IS

�VT
�

VS=VD=0
�62�

and

GDT � ��ID

�VT
�

VS=VD=0
. �63�

Conventional Luttinger liquid theory, where the presence
of the source and drain electrodes is neglected, predicts that
an electron charge injected by tunneling, e.g., as a right
mover into an interacting wire breaks up into separate charge
pulses moving in opposite directions, namely, a fraction
�1+g� /2 moving to the right and a fraction �1−g� /2 going to
the left.18,27,35–38 This effect originates from the coupling be-
tween the densities of right-moving and left-moving elec-
trons, accounted for by the homogeneous LL Hamiltonian.
As a consequence, one expects that when the tip injects elec-
trons asymmetrically, e.g., only toward the drain electrode on
the right ��=1�, the electron-electron interaction would
cause a part of the current to flow also to the source electrode
on the left.

However, when the source and drain electrodes are ex-
plicitly taken into account, our results show that the above

expectation is in fact wrong. Remarkably, using Eq. �60�, one
can indeed prove that for VS=VD the equality

A��� = ��ID� − �IS�
�ID� + �IS�

�
�

� � �64�

holds, indicating that for a clean wire the current asymmetry
is independent of the wire interaction strength g. In particu-
lar, for fully asymmetric tunneling ��=1�, the whole current
is injected into the drain electrode, just as in the noninteract-
ing case. This unidirectional charge flow even in the pres-
ence of interaction arises from the phenomenon of Andreev-
type reflections.22,23 Even though charge fractionalization
occurs in the bulk of the wire, the plasmonic excitations
reaching an interface with the leads experience the mismatch
of the interaction strengths in the wire and in the electrode
and are thus partly reflected as an oppositely charged excita-
tion. The sum of all reflected pulses at both interfaces re-
stores the property that the whole current flows into the
drain, like in the noninteracting wire. This behavior is in fact
very similar to an effect occurring in a two-terminal setup,
where the conductance of a wire adiabatically connected to
electrodes is G2t=e2 /h, independent of the interaction
strength. Thus, for perfectly transmitting contacts, it is im-
possible to extract the interaction constant neither from the
conductance of a two-terminal setup nor from the current
asymmetry in three-terminal measurements.

Nevertheless, in a three-terminal setup signatures of inter-
action do appear in the behavior of the differential conduc-
tances GST and GDT as a function of the tip-source and tip-
drain biases. Figures 7�a� and 7�b� show GST and GDT for the
case of a tip located in the middle of a wire with interaction
strength g=0.25. The various curves correspond to different
values of the asymmetry parameter �, which unbalances the
amount of injected right vs left-moving electrons. The fully
symmetric case ��=0� was discussed in Ref. 39. While for a
noninteracting wire GST and GDT are constant �as can easily
be seen from Eqs. �54� and �55��, in the presence of interac-
tion an oscillatory behavior arises. These oscillations are en-
tirely due to the electron-electron interaction in the wire,
which causes Andreev-type reflections even at adiabatic con-
tacts. With increasing � the conductance GST decreases until
it vanishes for �=1, whereas the conductance GDT increases
up to the maximum value for the completely asymmetric
case. The relation GST=GDT�1−�� / �1+�� between these two
conductances is independent of g.

Figures 7�c� and 7�d� describe the case of an off-centered
tip located at x0=0.45L. Apparently, the period of the oscil-
lations is the same as in panels �a� and �b� where the tip is in
the middle. This is due to the fact that this period is related to
the traversal time of plasmonic excitations originating from
the tip and interfering at the same point after an even number
of Andreev-type reflections at the contacts. This traversal
time depends neither on x0 nor on the asymmetry coefficient.

Let us now discuss the configuration where the tip acts as
a voltage probe, i.e., when VS�VD and VT is set to a value
such that IT=0 is fulfilled. In this configuration the quantity
on the left-hand side of Eq. �36� is vanishing due to Eqs. �16�
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and �17�. By applying a source-drain bias, one can analyze
how the source-drain conductance,

GSD = � �IM

��VS − VD�
�

IT=0
, �65�

is affected by the interaction strength. It is worth emphasiz-
ing that in a two-terminal setup, i.e., in the absence of the tip
�
�=0�, one obtains for a clean wire GSD=G2t=e2 /h, inde-
pendent of the interaction strength. As already mentioned
previously, this is due to the fact that, although the electron
charge injected by the source splits up in fractions through
the interaction-induced Andreev-type reflections at the con-
tacts, in a clean wire the series of these fractions always
sums up to e, disguising the interaction effects in the dc
average current.22 Our results show that a quite different be-
havior emerges for a three-terminal setup even in the con-
figuration where the tip does not inject any net current into
the wire. Figure 8�a� shows GSD as a function of the source-
drain bias, for different values of the interaction strength,
ranging from a noninteracting to a strongly interacting wire.
The left panel refers to the case of symmetric tunneling
�=0, whereas the right one analyzes the role of a tunneling
asymmetry. As one can see, the effects of interaction in the
wire become observable through the voltage probe since os-
cillation of GSD originating from Andreev-type reflections
emerge. Notice that at constant bare tunneling amplitude 

the zero bias conductance is higher in the presence of inter-
action than for a noninteracting wire since the renormaliza-
tion �Eq. �59�� of the tunneling amplitude suppresses 
. With
increasing tunneling asymmetry �see Fig. 8�b��, the differ-
ences between interacting and noninteracting wires become

less pronounced, and indeed the oscillations are washed out
for fully asymmetric tunneling �= �1.

The dimensionless tip voltage ūT= �e /��L
��V̄T ensuring

IT=0 shows an interesting dependence on the source-drain
bias. In the limiting cases of symmetric and completely
asymmetric tunneling this dependence coincides for interact-
ing and noninteracting wires �namely, ūT=uW for �=0 and
ūT=uW�u /2 for �= �1�. For intermediate values of the
asymmetry parameter � the tip voltage ūT shows an oscilla-
tory behavior with period �ūT=2� as a function of the
source-drain bias. We also see that the period of GSD in Fig.
8 is twice as large as the period of GTS and GTD in Fig. 7
where the tip is in the electron injection configuration. This
is due to the fact that in Fig. 8 the source-drain bias is ap-
plied symmetrically �uW=0�, while in Fig. 7 source and drain
are both grounded and the bias is only applied to the tip.

Finally, we emphasize again the difference between the
electron injection and the voltage-probe configurations of the
tip: While in the former case an asymmetry in tunneling does
not spoil the observation of effects of electron-electron inter-
action �see Fig. 7�, in the latter case interaction-induced os-
cillations can be best observed for symmetric tunneling, and
they are in fact vanishing for fully asymmetric tunneling.

C. Interaction effects on electron tunneling from
the tip: The case of a wire with nonideal contacts

In this section we analyze the three-terminal transport
properties in the presence of electron-electron interaction,
contact impurity scattering, and electron tunneling from the
tip. In particular, we discuss how a finite contact resistance
modifies the Andreev-type oscillations of the tunneling con-
ductances, previously discussed for the case of adiabatic con-
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FIG. 7. �Color online� Electron injection into an interacting wire. Panel �a� ��b�� shows the tunneling differential conductance GTS �GTD�
between the tip and source �drain� electrode as a function of the dimensionless tip-source �tip-drain� bias for a wire with interaction strength
g=0.25. The various curves refer to different values of the tunneling asymmetry ��=0 solid line, �=0.6 dotted line, and �=1 dashed line�.
The tunneling strength is 
�=0.01, and the tip is located in the middle of the wire. Panels �c� and �d� are the same as panels �a� and �b� but
the tip is located near a contact at x0=0.45L.
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tacts ��i=0�. We present results obtained by perturbation
theory for weak contact impurities �i and tunneling ampli-
tudes 
�. Technical details can be found in Appendixes A
and C. The currents may be written as

IM = I0 + Iimp + IM,
2 + IM,
2�, �66�

and

IT = IT,
2 + IT,
2�. �67�

Here I0= �e2 /h��VS−VD� is the current of an ideally con-
tacted wire in the absence of the tip, whereas Iimp is the
leading-order term accounting for nonideal contacts �see Eq.
�45��. In general, this latter term involves both Fabry-Pérot
and Andreev-type oscillations. Both, I0 and Iimp, vanish when
the electrochemical potentials for source and drain electrodes
are equal �VS=VD�; alternatively, they can be easily deter-
mined by measuring the current-voltage characteristics in the
absence of the tip. Henceforth, we shall focus on contribu-
tions to the currents arising from the presence of the tip. The
leading-order terms IM,
2 and IT,
2, given by Eq. �58�, de-
scribe tunneling into an ideally contacted wire and contain
only Andreev-type oscillations. The next-to-leading-order
terms �
2�,
2�2,…� also exhibit oscillations originating from
interference between backscattering at the contacts and tun-
neling to or from the tip. Such oscillations although modified
by the interaction are already present in a noninteracting
wire, unlike the Andreev-type oscillations of the leading-
order terms �
2� that are instead entirely due to the interac-
tion. We thus analyze how interaction affects the terms
IT�M�,
2�, which represent the most relevant correction to the
Andreev-type oscillations discussed above. These terms de-
scribe to leading order the interplay between electron injec-
tion at the tip and backscattering at the S and D contacts.

Explicitly one finds

IM�T�,
2� =
e�L

�

2�
�
��2���1 − �2jM�T�,
2�, �68�

where ��=�B,1
� +�B,2

� , and

jM�T�,
2� = −
1

2��W
�g+g−1+6�/4�T

�
i=1,2

�B,i
�

�� � �
−�

+�

d�1d�2	cos��uS − uT��1 + �uT − uD��2 − 2��W + guW − guG���0 − �i��

� e4��RW��0;�i;�1;�2�+RT��1;�2�� �
�1,�2=�

PM�T�
�1�2FW,
2�

�1�2+��1;�2�FT,
2�
�1�2 ��1;�2�sin�4��IW

�1�2+��0;�i;�1;�2� + IT
�1�2��1;�2���
 ,

�69�

where

PM
�1�2 = �2 + �1 − 2�1�2, �70�

PT
�1�2 = 2��2 − �1� . �71�

The functions FW,
2�
�1�2�3��1 ;�2� and FT,
2�

�1�2 ��1 ;�2� are defined in
Appendix B in Eqs. �B8� and �B24�, respectively, and the
functions RW��0 ;�i ;�1 ;�2�, IW��0 ;�i ;�1 ;�2�, RT��1 ;�2�, and
IT��1 ;�2�, accounting for the real and the imaginary parts of
several correlation functions in the wire and in the tip, are

defined in Appendix C in Eqs. �C1�, �C2�, �C11�, and �C12�,
respectively.

For simplicity, we limit the analysis of Eqs. �68� and �69�
to the electron injection configuration where source and
drain are grounded. We start with the case of symmetric tun-
neling ��=0�.

As already observed in Sec. III for a noninteracting wire,
term �68� leads to additional oscillations in the differential
conductance of the three-terminal setup. These conventional
oscillations are characterized by two periods related to the
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FIG. 8. �Color online� The effect of the tip in the voltage-probe
configuration on the zero-temperature conductance is shown as a
function of the source-drain bias. Panel �a� the case of symmetric
tunneling ��=0�. Panel �b� the case of an asymmetry in tunneling
��=1 /2�. Different curves refer to different values of the interacting
strength: noninteracting �g=1, solid curve�, weakly interacting
�g=0.7, dashed curve�, moderately interacting �g=0.4, dotted
curve�, and strongly interacting �g=0.25, dashed-dotted curve�. The
bare tunneling strength is 
=0.5 and the dimensionless cut-off pa-
rameter is �W=10−3.
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distances between the tip and the contact impurities so that
the pattern depends on the tip position. Electron-electron in-
teraction modifies this pattern reducing the amplitude of the
conventional oscillations and giving rise to additional
Andreev-type oscillations. The case of a tip in the middle of
the wire is shown in the upper panels �a�, �b�, and �c� of Fig.
9, where the differential conductance GDT is plotted as a
function of the tip bias uT for three different values of inter-
action strength, ranging from weak �g=0.75�, over moderate
�g=0.5� to strong interaction �g=0.35�, as displayed in the
three panels. In each panel the solid curve refers to the case
of ideal contacts where the oscillations are purely of Andreev
type. The dotted and dashed curves describe the effect of
finite contact resistances arising from the contribution of
term �68�. As one can see from panel �a�, for weak electron-
electron interaction the conventional oscillations dominate
and mask the Andreev-type oscillations. In this case, only
extremely good contacting might allow one to identify
Andreev-type processes. However, for moderate interaction
strength �panel �b��, the two types of oscillations have com-
parable amplitudes, and for strong interaction �panel �c�� the
conventional oscillations are strongly suppressed while term
�68� only causes a small shift of the conductance value. The
oscillations of GDT are essentially Andreev type.

A similar effects occurs when the tip is closer to one of
the contacts displayed in lower panels �d�, �e�, and �f� of Fig.

9. The main difference is that in this case the pattern of the
Andreev-type oscillations is more sinusoidal even for weak
interactions.

Our result indicates that, for a wire with a given interac-
tion strength, there is crossover value �C

� of the �renormal-
ized� contact resistance, below which the oscillations of the
nonlinear conductance can essentially be attributed to
Andreev-type processes. We have quantified �C

� for the case
of a tip close to the contacts, where the regularity of oscilla-
tions allows for a straightforward determination of their am-
plitude, defined as the average distance between maxima and
minima, as schematically displayed in the inset of Fig. 9�e�.
The crossover impurity strength �C

� is then simply deter-
mined by the value of �� for which the amplitude A
2� of the
conventional oscillation term IT,
2� �see Eq. �68�� equals the
amplitude A
2 of the Andreev-type oscillation term IT,
2 �see
Eq. �58��. The result is given in Table I for different values of
interaction strength. For contact impurity strength ����C

�

the oscillations of the nonlinear conductance are essentially
of Andreev type.

Let us finally briefly consider the case of asymmetric tun-
neling ��0. An important result is that, in view of Eq. �68�,
the contribution to the current of order 
2� vanishes in the
case of totally asymmetric tunneling ��= �1�. This property
is thus robust to electron-electron interaction within the Lut-
tinger liquid picture. In fact, one can show that in this case
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FIG. 9. �Color online� Zero-temperature nonlinear tip-drain conductance GDT as a function of the tip bias for tunneling amplitude 
�

=10−2 and symmetric tunneling �=0. The upper panels �a�, �b�, and �c� are related to a tip in the middle of the wire �x0=0�, whereas the
lower ones �d�, �e�, and �f� to a tip located at x0=0.45L. Panels pairs �a� and �d�, �b� and �e�, and �c� and �f� describe the case of a wire with
weak �g=0.75�, moderate �g=0.5�, and strong �g=0.35� interaction strength, respectively. In each panel the different curves refer to different
contact impurity strengths. The solid curves describe the case of ideal contacts where the oscillations are purely Andreev type. The dashed
�dotted� lines refer to finite contact impurity strength �B,1

� =�B,2
� =0.1 �=0.2�. For a weakly interacting wire the conductance oscillations are

mostly due to the conventional interference between backscattering at the contacts and tip tunneling and Andreev-type oscillations become
visible only for extremely low contact resistance. In contrast, for stronger interaction strength a finite contact resistance is sufficient for the
oscillations to be attributed to Andreev-type processes. The inset of panel �e� shows the definition of the average amplitude referred to in the
text.
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only perturbative contributions of order 
i
2n��1�2�n+m �n

=1,2 ,3 , . . . ;m=0,1 ,2 , . . .� are nonvanishing.

V. DISCUSSION AND CONCLUSIONS

In the present work, we have investigated transport prop-
erties of a quantum wire contacted to source and drain res-
ervoirs in the presence of a third electrode �tip� injecting
electrons into the wire. We have tailored our model to ac-
count for various aspects of a typical experimental situation
by including finite contact resistances and the presence of a
gate in addition to electron-electron interaction and by ana-
lyzing the effect of the position of the tip as well as the role
of a tunneling asymmetry. Specifically, we have considered
both the situation where the tip behaves as an electron injec-
tor and the voltage-probe configuration. We have found that
the three-terminal setup exhibits extremely rich behaviors,
determined not only by each of the above aspects but also by
their interplay. In order to facilitate the discussion, we pro-
pose to the reader different perspectives from which our re-
sults can be considered.

The effects of electron-electron interaction on Fabry-Pérot
oscillations. The origin of Fabry-Pérot oscillations boils
down to quantum interference between electron backscatter-
ing at two �or more� impurities. As a consequence, this phe-
nomenon is present also in a noninteracting quantum wire
�see Sec. III�, where the oscillations appear both as a func-
tion of the source-drain bias and as a function of the gate
voltage. The interference pattern is modified by electron-
electron interaction, which introduces a power-law suppres-
sion of the amplitude and, especially for g
1 /2, deforms
the sinusoidal shape toward a sawtoothlike shape �see Fig.
5�. Interaction also leads to a �partial� screening of the charge
in the wire,34 causing a change in the oscillation period as a
function of the gate bias with respect to the period as a func-
tion of the source-drain bias. This effect suggests an opera-
tive procedure to extract the Luttinger liquid parameter g
from measurements of the nonlinear conductance in the
Fabry-Pérot regime �see Fig. 6�. The effects of an asymmetri-
cally applied source-drain bias have also been discussed. We
emphasize that, differently from previous approaches
adopted in the literature, our way to introduce the biasing
voltages correctly recovers both gauge invariance28 and the
property that, in the limit of strong interaction g→0, the
current-voltage characteristics only depends on the differ-
ence between source and drain biases VS−VD.

Conventional vs Andreev-type oscillations. Besides modi-
fying Fabry-Pérot oscillations, electron-electron interaction
also yields another major effect, which is absent in a nonin-

teracting wire: At the wire-electrode interfaces, plasmon ex-
citations are partially reflected due to the mismatch of inter-
action strengths in the interacting wire and the noninteracting
electrodes. This effect, entirely due to interaction, occurs also
for ideally contacted adiabatic interfaces and gives rise to a
different type of oscillations, which are termed Andreev-type
oscillations32 since the incoming charge and the fractional
charge reflected at the contact have opposite signs, just as at
an interface between a normal metal and a superconductor. In
real experiments with interacting quantum wires in the
Fabry-Pérot regime, the current-voltage characteristics will
in general exhibit both conventional Fabry-Pérot oscillations,
i.e., oscillations that are already present in a noninteracting
wire and that are simply modified by interaction, and
Andreev-type oscillations, purely originating from interac-
tion. The interesting question arises whether one can distin-
guish between these two oscillatory phenomena in an opera-
tive way and, in particular, whether it is possible to
determine regimes and conditions, under which the latter can
be observed.

Since the amplitude of Fabry-Pérot oscillations is roughly
proportional to the reflection coefficients of the contacts,
whereas Andreev-type processes occur even with ideal inter-
faces, one might at first think that with improving transpar-
ency of the contacts the nonlinear conductance of a two-
terminal setup would exhibit a predominance of Andreev-
type oscillations over the conventional Fabry-Pérot ones.
This is, however, not the case, since for an ideally contacted
wire the sum of all Andreev-type reflection processes at the
two interfaces exactly recovers the injected pulse when the
sign of all reflected charge pulses is taken into account. The
transmission of an interacting wire adiabatically connected to
noninteracting leads turns out to equal 1, as was pointed out
in Refs. 22 and 23. Although Andreev-type oscillations of the
conductance do appear in the presence of even a single
impurity,32 their amplitude is proportional to the impurity
reflection coefficient. This implies that two-terminal setups
are not suitable to distinguish between Andreev-type and
Fabry-Pérot oscillations since both oscillations have the
same dependence on the impurity strengths �B,i

� . Furthermore
they also exhibit the same period as a function of the source-
drain bias.

In contrast, our analysis suggests that a three-terminal
setup may allow one to distinguish Andreev-type oscillations
from conventional oscillations. As far as Andreev-type oscil-
lations are concerned, three-terminal setups indeed offer one
important advantage with respect to two-terminal ones: in
the presence of a third electrode, Andreev-type oscillations
appear even for the ideal case of a wire adiabatically con-
nected to the source and drain electrodes ��i=0�. In the pres-
ence of interaction the tip-source and tip-drain nonlinear
conductances GST and GDT oscillate as a function of the tip
voltage uT already to leading order 
2 in the tunneling am-
plitude, independent of contact impurity strengths �i. This
effects holds when the tip acts as an electron injector �see
Fig. 7� as well as when it acts as a voltage probe �see Fig. 8�,
and the oscillations vanish for a noninteracting wire �see
Eqs. �54� and �55��. Thus, quite differently from a two-
terminal setup, in three-terminal setups Andreev-type oscil-
lations become better visible when the contact transparency
is improved.

TABLE I. Crossover value of the �renormalized� contact impu-
rity strength �C

� , below which oscillations can be attributed to
Andreev-type processes, for various values of the interaction
strength g. The tip is located at x0=0.45L, like in the lower panels
of Fig. 9.

g 0.4 0.5 0.6 0.7 0.8

�C
� 0.2 0.02 4�10−3 4�10−4 10−4
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In view of the fact that in realistic experiments the contact
resistance is always finite, we have quantitatively evaluated
the influence of the contact resistance on the conductance
oscillations �see Eq. �69�� showing that additional Fabry-
Pérot-type oscillations superimpose with the Andreev-type
ones �see Fig. 9�. We have thus put forward criteria for ob-
serving the interaction induced Andreev-type oscillations. At
least two experimental situations are promising: For the con-
ventional case of symmetric tunneling form the tip, we have
determined typical values of the contact resistance below
which the oscillations in the current-voltage characteristics
can essentially be attributed to Andreev-type phenomena.
The result, shown in Table I, indicates that the stronger the
interaction of the wire the larger are the contact resistances
that are tolerable to still observe Andreev-type oscillations.
Furthermore, in case that the setup allows for fully asymmet-
ric tunneling, the leading-order correction �69� competing
with the Andreev-type term is vanishing even in the presence
of interaction.

In summary, in systems such as carbon nanotubes where
the interaction strength is typically strong, g�0.2–0.3,
while electron injection from an STM tip is typically sym-
metric, Andreev-type oscillations may be observed by
achieving a high quality of the contacts to the leads. In con-
trast, in semiconductor quantum wires, where the interaction
strength is usually moderate g�0.6–0.7, asymmetric tunnel-
ing induced by a magnetic field is more suitable to observe
Andreev-type oscillations.

The effects of asymmetric tunneling. The above-men-
tioned case of asymmetric tunneling deserves some further
remarks. Recent experiments by Yacoby and co-workers12,21

showed that fully asymmetric tunneling into semiconductor-
based quantum wires can be realized by appropriate tuning
of a magnetic field. Inspired by these experiments, we have
considered the possibility of an asymmetry in electron tun-
neling from the tip. Before discussing our results we would
like to point out the relation between our model and Yaco-
by’s experimental setup. While Yacoby et al.8 studied elec-
tron tunneling between two parallel wires where momentum
conservation is required, our model considers injection from
a pointlike tip. Although these two situations may at first
seem incompatible, a regime can be determined where they
are equivalent. In the experiments of Refs. 12 and 21 elec-
trons are injected from an upper shorter wire with length Lu
into a lower longer wire with length Ll. Since the tunneling
region reasonably coincides with the length of the short wire,
momentum conservation only holds up to an uncertainty �k
�1 /Lu. Although this uncertainty is small enough to select a
specific electron momentum state in the upper wire, �k may
be much bigger than the mean level spacing of the lower
wire if the latter is much longer than the former �Ll�Lu�. In
this regime, while the electron wave function behaves like a
plane wave for the short wire, for the long wire it can effec-
tively be considered as a localized wave packet, and our
model applies.

Under these conditions several interesting effects emerge.
In the first instance, by using the tip as an electron injector,
the tunneling asymmetry can be exploited to gain the trans-
mission coefficient of each contact by measuring the current
asymmetry �Eq. �36�� in the two cases of tunneling purely to

the right ��= +1� and to the left ��=−1�, as has been shown
in Eq. �40�. Second, when the tip is used in the configuration
of a voltage probe, fully asymmetric tunneling allows one to
eliminate the suppression of the source-drain conductance
GSD, which occurs for symmetric tunneling. Similarly, GSD
becomes independent of the tip position.

When electron-electron interaction is taken into account,
the scenario is even richer. Luttinger liquid theory predicts
that electron-electron interaction induces a current asymme-
try which depends on the interaction strength g. The appeal-
ing question arises whether this effect is observable in ex-
periments, where currents are measured not directly in the
interacting wire but in metallic electrodes connected to it.
The investigation carried out in Ref. 27, based on the as-
sumption that the interfaces between the interacting wire and
the electrodes can be treated phenomenologically with a
transmission coefficient à la Landauer-Büttiker, has led these
authors to the claim that the interaction strength can be ob-
served via the current asymmetry. Here we have scrutinized
this prediction by taking the presence of source and drain
electrodes into account fully consistently within the inhomo-
geneous Luttinger liquid model. Considering as a test bench
the case of a wire adiabatically contacted to source and drain
electrodes, we have proven that, although charge fractional-
ization does occur in the bulk of the wire, the sum of
Andreev-type reflection processes at the contacts leads to a
current asymmetry A that is independent of the electron-
electron interaction strength, just as it is the case with the
two terminal conductance G2t. Thus, already for this ideal
case, no proof of charge fractionalization can be gained from
the analysis of A or from the ration e2A / �hG2t�. We have
also shown that, nevertheless, interaction effects do appear in
the behavior of the nonlinear conductance where interaction
induced oscillations arise as a function of the tip-source and
tip-drain biases. It is worth emphasizing that this feature is
due to the three-terminal setup since the two-terminal con-
ductance of a Luttinger liquid ideally contacted to leads is
independent of the source-drain bias.
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APPENDIX A: KELDYSH FORMALISM AND
PERTURBATIVE EVALUATION OF THE CURRENT

In order to compute the current in the three terminal
setup, we adopt the Keldysh formalism30 suitable to account
for out-of-equilibrium properties. According to Eq. �14�, the
current at position x �located in the source or in drain leads�
and time t can be written as
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I�x,t� =
evW

2 �
�=�

�j����x,t�
 , �A1�

where

j����x,t� = �
r=�

r:�r
†����x,t��r

����x,t�: . �A2�

Here �= + ��=−� corresponds to the upper �lower� branch
of the Keldysh contour depicted in Fig. 10. The current I�x , t�
and various other quantities introduced below also depend on
the injection point x0 and the impurity positions x1 and x2.
These variables will frequently be suppressed to simplify
notation.

In the Keldysh interaction picture with

H0 = Hkin,W + HU + Hkin,T �A3�

and

HI = H� + Htun + H�W
+ H�T

, �A4�

one obtains

I�x,t� =
evW

2 �
�=�
�TK� j����x,t�

�exp	− i/� �
��=�

���
−�

�

dt�HI
�����t��
��

0

, �A5�

where �. . .
0 denotes the average with respect to the equilib-
rium state determined by the Hamiltonian H0 and TK is the
Keldysh time-ordering operator. Expanding the exponent in
Eq. �A5� perturbatively in terms of 
 and �, one obtains the
current to the desired order. Below we sketch the calculation
of I
2�, i.e., the contribution of order 
2� to I�x , t�. With the
abbreviations

UW = exp	−
i

�
�

��=�

���
−�

�

dt�H�W

�����t��
 ,

UT = exp	−
i

�
�

��=�

���
−�

�

dt�H�T

�����t��
 , �A6�

one obtains40

I
2��x,t� =
ievW

3 vT

4 �
i=1,2

�
r1,r2=�

�i
r1

r2� � � dt1dt2dt3 �

�,�1,�2,�3=�

�1�2�3

��TK� j����x,t�UWUT�e−i�r1−r2�kWx0�r1

†��1��x0,t1�c��1��0,t1�c†��2��0,t2��r2

��2��x0,t2� + ei�r1−r2�kWx0c†��1��0,t1�

��r1

��1��x0,t1��r2

†��2��x0,t2�c��2��0,t2�� �
r3=�

e−2ir3kWxi�r3

†��3��xi,t3��−r3

��3��xi,t3���
0

= −
evW

3 vT

2 �
i=1,2

�
r1,r2=�

�i
r1

r2� � � dt1dt2dt3 �

�,�1,�2,�3=�

�1�2�3I�TK� j����x,t�UWUT�e−i�r1−r2�kWx0�r1

†��1��x0,t1�

�c��1��0,t1�c†��2��0,t2��r2

��2��x0,t2�� �
r3=�

e−2ir3kWxi�r3

†��3��xi,t3��−r3

��3��xi,t3���
0

, �A7�

where we have used the properties,

�TK�A��A��tA�B��B��tB� . . . Z��Z��tZ��
� = �TK�Z†�−�Z��tZ� . . . B†�−�B��tB�A†�−�A��tA��
 �A8�

and

UW,T = �exp	−
i

�
�

��=�

���
−�

�

dt�H�W,T

�−����t��
�†

. �A9�

Since the electron-electron interaction �Eq. �8�� contains only forward-scattering terms, all nonvanishing wire correlation
functions must involve an even number of operators with a given chirality r. This yields r2=−r1=r3 so that

I
2��x,t� = −
evW

3 vT

2

+
− �

i=1,2
�i� � � dt1dt2dt3 �

�,�1,�2,�3=�

�1�2�3

� �
r3=�

I�e2ir3kW�x0−xi��TK�j����x,t�UWUT�−r3

†��1��x0,t1�c��1��0,t1�c†��2��0,t2��r3

��2��x0,t2��r3

†��3��xi,t3��−r3

��3��xi,t3��
0� .

�A10�

t

+

-
FIG. 10. Keldysh contour along the time axis.
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The term with r3=+ can be shown to yield the same contribution as the term with r3=−. To see this explicitly, one makes use
of I�z�=−I�z��, exploits Eqs. �A8� and �A9�, and renames variables according to �→−�, �i→−�i �i=1,2 ,3�, and t1↔ t2.
One can then write

I
2��x,t� = − evW
3 vT
+
− �

i=1,2
�i� � � dt1dt2dt3 �

�1,�2,�3=�

�1�2�3I�e−2ikW�x0−xi�W
2�,i
�1�2�3�t1,t2,t3�T
2

�1�2�t1,t2�� , �A11�

where

W
2�,i
�1�2�3�t1,t2,t3� = �

�=�

�TK�j����x,t�UW�+
†��1��x0,t1��−

��2��x0,t2��−
†��3��xi,t3��+

��3��xi,t3��
0 �A12�

contains correlation functions of wire operators, while

T
2
�1�2�t1,t2� = �TK�UTc��1��t1�c†��2��t2��
0 �A13�

is a correlation function of the tip. These correlation functions are evaluated in Appendix B starting with Eq. �B7� and �B23�,
respectively. Inserting these results, one obtains

I
2��x,t� = 2evW	 vW

2�aW

2 vT

2�aT

+
− �

i=1,2
�i� � � dt1dt2dt3

�R�eie��VS+VD−2VT��t1−t2�+�VS−VD��t1−t3+t2−t3��/2�e−2i�kW+g2e�VS+VD−2VG�/�vW��x0−xi�

� �
�1,�2,�3=�

�1�2�3FW
�1�2�3�t1 − t2,t2 − t3�FT

�1�2�t1 − t2�bW,
2�,i
�1�2�3 �t1 − t3,t2 − t3�bT,
2

�1�2�t1 − t2�

����x��x,t��+�x0,t1�
0
Kel + �1��x��x,t��+�x0,t1�
0

ret + ��x��x,t��−�x0,t2�
0
Kel + �2��x��x,t��−�x0,t2�
0

ret

− ��x��x,t���xi,t3�
0
Kel − �3��x��x,t���xi,t2�
0

ret +
1

��
� � dx�dt��W�x���TK��x��x,t��x���x�,t���
0

ret�� ,

�A14�

where, for any pair of bosonic operators A and B, the follow-
ing definitions hold

�A�tA�B�tB�
Kel = ��A�tA�,B�tB��
 , �A15�

�A�tA�B�tB�
ret = ��tA − tB���A�tA�,B�tB��
 , �A16�

�A�tA�B�tB�
adv = − ��tB − tA���A�tA�,B�tB��
 . �A17�

We now observe that the last term in Eq. �A14� can be
dropped. Indeed, since it depends neither on �i nor on
ti �i=1,2 ,3�, it can be singled out of the sums ��i

and inte-
grals �dti; the remaining sums and integrations yield a van-
ishing result since the corresponding expression equals the
term of order 
2� of an expansion of

�TK�exp	−
i

�
�

��=�

���
−�

�

dt�HI
�����t��
��

0

� 1.

�A18�

Simple transformations of the integration variables of Eq.
�A14� and use of the relations

�
−�

�

dt��x��x,t��r�x0,0�
0
Kel = 0, �A19�

�
−�

�

dt��x��x,t��r�x0,0�
0
ret =

i

4vW
�1 + r sgn�x − x0��

�A20�

obtained from the correlation functions provided in Appen-
dix C, yield

PUGNETTI et al. PHYSICAL REVIEW B 79, 035121 �2009�

035121-18



I
2��x,t� = −
evW

3 vT

16�3aTaW
2 
+
− �

i=1,2
�i� � dt1dt2I�eie��VS+VD−2VT��t1−t2�+�VS−VD��t1−t3+t2−t3��/2�e−2i�kW+g2e�VS+VD−2VG�/�vW��x0−xi�

� �
�1,�2,�3=�

�1�2�3FW
�1�2�3�t1,t2�FT

�1�2�t1 − t2�bW,
2�,i
�1�2�3 �t1,t2�bT,
2�,i

�1�2 �t1 − t2���1 + �2 − 2�3 + sgn�x − x0���1 − �2��� .

�A21�

Taking into account Eqs. �B8�, �B16�, �B24�, and �B26�, we now observe that upon reversal of Keldysh contour indices
�i→−�i �i=1,2 ,3�,

FW
�1�2�3�t1,t2� → FW

�1�2�3�t1,t2� , �A22�

FT
�1�2�t1 − t2� → − FT

�1�2�t1 − t2� , �A23�

bW,
2�,i
�1�2�3 �t1,t2� → �bW,
2�,i

�1�2�3 �t1,t2���, �A24�

bT,
2
�1�2�t1 − t2� → �bT,
2

�1�2�t1 − t2���, �A25�

implying that in Eq. �A21� the contribution for �3=− is conjugate to the one stemming from �3=+. Thus

I
2��x,t� = −
evW

3 vT

8�3aTaW
2 
+
− �

i=1,2
�i� � dt1dt2I�eie��VS+VD−2VT��t1−t2�+�VS−VD��t1+t2��/2�e−2i�kW+g2e�VS+VD−2VG�/�vW��x0−xi�

� �
�1,�2=�

FW
�1�2+�t1,t2�FT

�1�2�t1 − t2�bW,
2�,i
�1�2+ �t1,t2�bT,
2

�1�2�t1 − t2���2 + �1 − 2�1�2 + sgn�x − x0���2 − �1��� .

�A26�

The term sgn�x−x0� appearing in the last line is positive
�negative� for a measurement point x located in the drain
�source� lead. Recalling that the current can be written as in
Eqs. �16� and �17�, it is easily seen that those terms that are
multiplied by sgn�x−x0� yield IT /2, whereas the other ones
yield IM. Inserting Eqs. �B8�, �B16�, �B24�, and �B26� into
Eq. �A26� and changing to dimensionless integration vari-
ables �i= tvW /gL, result �69� is obtained.

Similar procedures can be applied to evaluate the terms of
orders �2, �3, and 
2. We find

I�2�x,t� = −
evW

3

2 �
i,j=1,2

�i� j� � dt1dt2

� �
�1,�2=�

�1�2R�W�2,ij
�1�2�t1,t2�e−2ikW�xi−xj�� ,

�A27�

I�3�x,t� = −
evW

4

2 �
i,j,k=1,2

�i� j�k� � � dt1dt2dt3

� �
�1,�2=�

�1�2I�W�3,ijk
�1�2 �t1,t2,t3�e−2ikW�xi−xj�� ,

�A28�

and

I
2�x,t� = −
evW

2 vT

2 �
r=�


r
2� � dt1dt2

� �
�1,�2=�

�1�2R�W
2,r
�1�2�t1,t2�T
2

�1�2�t1,t2�� ,

�A29�

where

W�2,ij
�1�2�t1,t2� = �

�=�

�TK�j����x,t�UW�+
†��1��xi,t1��−

��1��xi,t1�

��−
†��2��xj,t2��+

��2��xj,t2��
0, �A30�

W�3,ijk
�1�2 �t1,t2,t3� = �

�,�3,r=�

�3�TK�j����x,t�UW�+
†��1��xi,t1�

��−
��1��xi,t1��−

†��2��xj,t2��+
��2��xj,t2�

��r
��3��xk,t3��
0, �A31�

and

W
2,r
�1�2�t1,t2� = �

�=�

�TK�j����x,t�UW�r
†��1��x0,t1�

��r
��2��x0,t2��
0. �A32�
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APPENDIX B: EVALUATION OF W AND T FACTORS
BY BOSONIZATION

Hamiltonian �A3� of the interaction picture decomposes
into commuting wire and tip parts, i.e., H0=H0,W+H0,T. For
a noninteracting wire H0,W=Hkin,W and the wire correlation
functions W introduced in Eqs. �A12� and �A30�–�A32� can
be factorized into products of single-particle electron correla-
tors using Wick’s theorem. In this case the W’s can be evalu-
ated straightforwardly, and the results for contributions
�A11� and �A27�–�A29� to the current coincide with the cor-
responding terms of an expansion of the current obtained
from the scattering matrix formalism. In the interacting case,
however, H0,W=Hkin,W+HU, and Wick’s theorem cannot be
applied. In this appendix we evaluate the wire correlators W
using the bosonization technique.41 The wire field operators
can be represented as

�r�x� =
�r

�2�aW

eir�4��r�x�, �B1�

where the fields �� describe particle-hole excitations and �r
are the Klein factors represented as Majorana fermions.41

Finally, aW is a cut-off length of order of the lattice spacing.
Introducing Eq. �B1� into Eqs. �3� and �13�, one obtains

H0,W =
�vW

2
�

−�

�

dx�: 2�x� +
1

g2�x�
��x��x��2:� , �B2�

where �=�++�− and  =−�x��+−�−� are the conjugate
bosonic fields, i.e., ���x , t� , �y , t��=i��x−y�. Finally,

g�x� = �1 for �x� � L/2

	1 +
U

��vW

−1/2

for �x� 
 L/2 � �B3�

is the inhomogeneous interaction parameter. Notice that
0�g�1, where g=1 describes the noninteracting case
present in the leads. The limit g→0 corresponds to strongly
repulsive interaction. The wire current operator Eq. �14� is

expressed in terms of the dual field �=�+−�− as

I�x,t� = evW��x��x,t�
 . �B4�

Further, with the help of the relation

�r�x,t� =
�x�r�x,t�

��
, �B5�

term �6� of the Hamiltonian can be written as

H�W
=

1
��
�

−�

+�

dx�W�x��x��x� . �B6�

We start by discussing the derivation of W
2�,i
�1�2�3�t1 , t2 , t3�.

Inserting Eqs. �B1�, �B4�, and �B5� into Eq. �A11�, one ob-
tains

W
2�,i
�1�2�3�t1,t2,t3� =

1

�2�aW�2FW
�1�2�3�t1 − t3,t2 − t3�

�BW,
2�,i
�1�2�3 �t1,t2,t3� . �B7�

Here

FW
�1�2�3�t1 − t3,t2 − t3�

= �TK��+
��1��t1��−

��2��t2��−
��3��t3��+

��3��t3��
0

= ��t3 − t1���t3 − t2��1�2 + ��t1 − t3���t2 − t3�

− ��t2 − t3���t3 − t1��1�3 − ��t1 − t3���t3 − t2��2�3

�B8�

accounts for the correlation function of fermionic Klein fac-
tors, whereas

BW,
2�,i
�1�2�3 �t1,t2,t3� = ��

�=�

�

�J�
����x,t��TK�exp	−

i

�
�

��=�

��� dx��W�x��
�x��

�����x��
��

+ �
��=�

� dx�J�
�����x��

�x�
�����x��
��

− i�4���+
��1��x0,t1� + �−

��2��x0,t2� − ���3��xi,t3��
��
0

�
J��0

�B9�

correlates bosonic vertex operators. Also, we have introduced the notation x= �x , t�. Expression �B9� can straightforwardly be
evaluated taking into account that for a functional

!�J� =�TK�exp	A + �
�=�

� dxJ����x�B����x�
��
0

, �B10�

where A and B are linear combinations of bosonic operators, one has41
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� �!�J�
�J����x�

�
J=0

= �TK�AB����x��
0 exp��TK�A2�
0� . �B11�

Furthermore, it can be shown that H�W
, i.e., the first term appearing in the exponent of Eq. �B9�, simply yields a shift in the

operators �� according to

�r
����x,t� → �r

����x,t� + �0,r�x,t� r = � , �B12�

where the zero modes,

�0,r�x,t� = −
1

4��

e�VS − VD + r�VS + VD��
�

t +
e

4���vW�− �VS − VD���1 − r�x +
L

2
� − g2�VS + VD − 2VG�

L

2
for x � − L/2

�g2�VS + VD − 2VG� + r�VS − VD��x for �x� � L/2

�VS − VD���1 + r�x −
L

2
� + g2�VS + VD − 2VG�

L

2
for x 	 L/2, �

�B13�

fulfill the equation,

�0,r�x� − �0,r�y� =
− i

���
� dx��W�x�����r�x��x��x��
ret − ��r�y��x��x��
ret� . �B14�

After lengthy but straightforward algebra one obtains

BW,
2�,i
�1�2�3 �t1,t2,t3� = − 2ie�ie/���VS�t1−t3�−VD�t2−t3�−g2�VS+VD−2VG��x0−xi�/vW�bW,
2�,i

�1�2�3 �t1 − t3,t2 − t3�

����x��x,t��+�x0,t1�
0
Kel + �1��x��x,t��+�x0,t1�
0

ret + ��x��x,t��−�x0,t2�
0
Kel + �2��x��x,t��−�x0,t2�
0

ret

− ��x��x,t���xi,t3�
0
Kel − �3��x��x,t���xi,t2�
0

ret +
1

��
� dx��W�x���TK��x��x,t��x���x���
0

ret� , �B15�

where

bW,
2�,i
�1�2�3 �t1,t2� = exp�− 2��TK���+

��1��x0,t1� + �−
��2��x0,t2�

− ���3��xi,0��2�
0�

= exp�4��RW��0;�i;�1;�2�

+ iIW
�1�2�3��0;�i;�1;�2��� . �B16�

The correlation functions RW��0 ;�i ;�1 ;�2� and
IW

�1�2�3��0 ;�i ;�1 ;�2� are defined in Appendix C �see Eqs.
�C1�–�C6�� and also given explicitly there in the zero tem-
perature limit. The arguments �i= tivW /gL= ti�L

� and � j
=xj /L �j=0,1 ,2� are dimensionless time and space vari-
ables. In deriving Eqs. �B15� and �B16� we have used the
equalities

�TK�A��A��tA�B��B��tB��


=
1

2
��A�tA�B�tB�
Kel + �A�A�tA�B�tB�
adv

+ �B�A�tA�B�tB�
ret� �B17�

and

�A�tA�B�tB�
Kel =
1

2 �
�A,�B=�

�A��A��tA�B��B��tB�


= 2R�A�tA�B�tB�
 , �B18�

�A�tA�B�tB�
ret =
1

2 �
�A,�B=�

�B�A��A��tA�B��B��tB�


= 2i��tA − tB�I�A�tA�B�tB�
 , �B19�

�A�tA�B�tB�
adv =
1

2 �
�A,�B=�

�A�A��A��tA�B��B��tB�


= − 2i��tB − tA�I�A�tA�B�tB�
 , �B20�

valid for any pair A and B of real Bose operators.
As far as the tip correlators T are concerned, see Eqs.

�A13�, �A29�, and �A27�, Wick’s theorem might be applied
since the tip is supposed to be noninteracting, and the use of
bosonization is unnecessary. However, to have a uniform for-
malism and notation throughout the paper, we prefer to uti-
lize a bosonized approach for the tip as well. The tip electron
field and density are written as
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c�y� =
�T

�2�aT

ei�4���y� �B21�

and

:c†�y�c�y�: =
�y��y�

��
, �B22�

where ��y� is a chiral �right-moving� boson field and �T and
aT are the Klein factor and cut-off length of the tip, respec-
tively. By way of example, we evaluate here the T factor �Eq.
�A13�� appearing in the calculation of I
2�. Inserting Eqs.
�B21� and �B22� into Eqs. �A6� and �A13�, one obtains

T
2
�1�2�t1 − t2� =

1

2�aT
FT

�1�2�t1 − t2�BT,
2
�1�2�t1 − t2� ,

�B23�

where, similar to the wire case,

FT
�1�2�t1 − t2� = �TK��T

��1��t1�,���2��t2��
0

= − �1��t2 − t1� + �2��t1 − t2� �B24�

accounts for the correlation function of fermionic Klein fac-
tors, whereas the correlator of bosonic vertex operators reads

BT,
2
�1�2�t1 − t2� =�TK�exp	−

i

�
�

��=�

��� dy��T�y��
�y���y��

��

+ i�4�����1��0,t1� − ���2��0,t2��
��
0

.

�B25�

It is easily verified that the first term in the exponential func-
tion, which originates from term �12� in the Hamiltonian,
merely yields a time-dependent phase factor so that

BT,
2
�1�2�t1 − t2� = e−�ie/��VT�t1−t2�bT,
2

�1�2�t1 − t2� , �B26�

where

bT,
2
�1�2�t1 − t2� = exp�− 2��TK�����1��0,t1� − ���2��0,t2��2�
0�

= exp�4��RT��1 − �2� + iIT
�1�2��1 − �2��� .

�B27�

The functions RT��� and IT
�1�2��� are given in Appendix C,

see Eqs. �C12�.

APPENDIX C: CORRELATION FUNCTIONS

This appendix collects properties of correlation functions
appearing in Eqs. �60� and �69�, as well as in Eqs. �B16� and
�B27�. The transport properties of the wire are expressed in
terms of the functions

RW��0;�i;�1;�2� = Rreg
�+�+��0;�i;�1� + Rreg

�−�−��0;�i;�2�

+ R�+�−��0;�i;�1� + R�−�+��0;�i;�2�

− R�+�−��0;�0;�1 − �2� − R�−�+��i;�i;0� ,

�C1�

IW
�1�2�3��0;�i;�1;�2�

= �
r=�

���3���1� − �1��− �1��I�+�r��0;�i;�1�

+ ��3���2� − �2��− �2��I�−�r��0;�i;�2��

− ��2���1 − �2� − �1���2 − �1��I�+�−��0;�0;�1 − �2� ,

�C2�

where the functions Rreg
�r�r�� ;�� ;�� and I�r�r�� ;�� ;�� are the

real and imaginary parts, respectively, of the autocorrelation
functions of the bosonic fields �r. Specifically

Rreg
�r�r��;��;�� = R���r�x,t��r�x�,0� −

1

2
��r

2�x,t�

+ �r
2�x�,0���

0
� , �C3�

I�r�r��;��;�� = I���r�x,t��r�x�,0�
0� . �C4�

Likewise, the real and imaginary parts of the crosscorrelation
functions of fields with different chirality r read

R�r�−r��;��;�� = R���r�x,t��−r�y,0�
0� , �C5�

I�r�−r��;��;�� = I���r�x,t��−r�y,0�
0� . �C6�

Notice that the real part of the correlation functions of fields
with the same chirality needs to be defined with an infrared
regularization as in Eq. �C3�. The above equations are given
in terms of the dimensionless time and space variables �
= tvW /gL and �=x /L introduced previously. From the inho-
mogeneous Luttinger liquid model one obtains at zero
temperature

Rreg
�r�r��,��,�� = −

1

32���g + g−1 − 2r� �
m�Zeven

��m� ln
�W

2 + �� + �r + m�2

�W
2 + m2 + �g + g−1 + 2r� �

m�Zeven

��m�ln
�W

2 + �� − �r − m�2

�W
2 + m2

+ �g − g−1� �
m�Zodd

��m�	ln
�W

2 + �� + �R + m�2

�W
2 + ��R + m�2 + ln

�W
2 + �� − �R − m�2

�W
2 + ��R + m�2 + ln

��W
2 + ��R + m�2�2

��W
2 + �2� + m�2���W

2 + �2�� + m�2�

� ,

�C7�
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I�r�r��,��,�� = −
1

16���g + g−1 − 2r� �
m�Zeven

��m� arctan	 � + �r + m

�W

 + �g + g−1 + 2r� �

m�Zeven

��m� arctan	 � − �r − m

�W



+ �g − g−1� �
m�Zodd

��m��arctan	 � + �R + m

�W

 + arctan	 � − �R − m

�W

�� , �C8�

R�r�−r��;��;�� = −
1

32���g − g−1� �
m�Zeven

��m��ln	�W
2 + �� + �r + m�2

�W
2 + m2 
 + ln	�W

2 + �� − �r − m�2

�W
2 + m2 
�

+ �g + g−1 − 2r� �
m�Zodd

��m� ln	�W
2 + �� + �R + m�2

�W
2 + ��R + m�2 
 + �g + g−1 + 2r� �

m�Zodd

��m� ln	�W
2 + �� − �R − m�2

�W
2 + ��R + m�2 


+ �g + g−1� �
m�Zodd

��m� ln
��W

2 + ��R + m�2�2

��W
2 + �2� + m�2���W

2 + �2�� + m�2�
−

1

2
�g − g−1� �

m�Zeven

��m�

��ln	 ��W
2 + �2� + 1 + m�2���W

2 + �2�� + 1 + m�2�
��W

2 + m2�2 
 + ln	 ��W
2 + �2� − 1 + m�2���W

2 + �2�� − 1 + m�2�
��W

2 + m2�2 
��
�C9�

and

I�r�−r��;��;�� = −
1

16���g − g−1� �
m�Zeven

��m��arctan	 � + �r + m

�W

 + arctan	 � − �r − m

�W

�

+ �g + g−1 − 2r� �
m�Zodd

��m� arctan	 � + �R + m

�W

 + �g + g−1 + 2r� �

m�Zodd

��m� arctan	 � − �R − m

�W

� . �C10�

Here we have introduced �r=�−��, �R=�+��, and the dimensionless cut-off length �W=aW /gL, as well as the Andreev-type
reflection coefficient �= �1−g� / �1+g�.

The correlation functions for the noninteracting tip can directly be obtained from the above results. The tip is described by
a single chiral mode, and we need the correlation function only for coordinates at the injection point y=0. From Eqs. �C7� and
�C8� we find for �=��=0 by taking the limit g→1 and replacing �W by �T

RT��� = Rreg
���0;0;�� = Rreg

�+�+�0;0;���g→1

�W→�T

= −
1

8�
ln

�T
2 + �2

�T
2 , �C11�

IT
�1�2��� = FT

�1�2���I���0;0;�� = FT
�1�2���I�+�+�0;0;���g→1

�W→�T

= −
�2���� − �1��− ��

4�
arctan	 �

�T

 . �C12�
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